电话咨询 在线咨询 产品定制
电话咨询 在线咨询 产品定制
010-68321050

碱基编辑器,生物医药的行动成员

五度易链 2018-10-10 2917 176

专属客服号

微信订阅号

科技最前沿

剖析产业发展现状

为区域/园区工作者洞悉行业发展

基因是脱氧核糖核酸(DNA)上的片段,而DNA双链螺旋结构由4种化学碱基组成,即腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)和胸腺嘧啶(T),其中鸟嘌呤和胞嘧啶配对,腺嘌呤和胸腺嘧啶配对。 新型碱基编辑器,它可以在不断开DNA双链的情况下,将A·T碱基对转换成G·C碱基对,也就是说能实现高效、可选择性地在基因中替换碱基。 在所有已知的疾病相关单碱基对突变中,约有一半涉及野生型G·C碱基对转换成突变型A·T碱基对,新发明的碱基编辑器有可能帮助患者恢复这一类突变。 据介绍,这种碱基编辑器对细菌细胞和人类细胞的DNA均有效,在人类细胞中,它们能在大范围目标区域内引入预期突变,效率约为50%,高于任何其他基因组编辑方法的效率,而且几乎没有副作用。

 

  “碱基编辑器”是通过替换基因中的碱基对,改变生物的基因结构。关于该项技术是否能够应用于医药治疗的讨论一直在进行中,该项技术的发展也是很多人关心的问题。

  碱基编辑器的介绍

  基因是脱氧核糖核酸(DNA)上的片段,而DNA双链螺旋结构由4种化学碱基组成,即腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)和胸腺嘧啶(T),其中鸟嘌呤和胞嘧啶配对,腺嘌呤和胸腺嘧啶配对。 新型碱基编辑器,它可以在不断开DNA双链的情况下,将A·T碱基对转换成G·C碱基对,也就是说能实现高效、可选择性地在基因中替换碱基。 在所有已知的疾病相关单碱基对突变中,约有一半涉及野生型G·C碱基对转换成突变型A·T碱基对,新发明的碱基编辑器有可能帮助患者恢复这一类突变。 据介绍,这种碱基编辑器对细菌细胞和人类细胞的DNA均有效,在人类细胞中,它们能在大范围目标区域内引入预期突变,效率约为50%,高于任何其他基因组编辑方法的效率,而且几乎没有副作用。

  碱基编辑器的遗传病治疗实验

  新生儿的父母可能都了解一种称为苯丙酮尿症(phenylketonuria)的代谢障碍。过量的苯丙氨酸会迟滞精神和运动发育。如果这种遗传疾病不及时加以治疗的话,儿童可能会遭受严重的精神残疾。这种代谢障碍的病因是编码苯丙氨酸羟化酶(phenylalanine hydroxylase, Pah)的基因发生突变。这种由肝细胞产生的酶代谢苯丙氨酸。这种代谢障碍是一种“常染色体隐性”遗传疾病:儿童如果从母亲那里遗传一个突变基因拷贝和从父亲那里遗传一个突变基因拷贝,那么就会患上这种疾病。到目前为止,这种疾病仍然是无法治愈的。

  在一项新的研究中,来自瑞士苏黎世联邦理工学院和苏黎世大学的研究人员利用一种方法纠正肝细胞中的两个突变基因拷贝,从而治愈这种疾病。他们取得成功,至少是在小鼠体内。相关研究结果发表在2018年10月的Nature Medicine期刊上,论文标题为“Treatment of a metabolic liver disease by in vivo genome base editing in adult mice”。

  在利用一种酶加以强化的CRISPR/Cas9系统的帮助下,这些研究人员改变了成年小鼠中这两个突变基因拷贝中的碱基序列。这些经过校正的肝细胞能够产生功能性的Pah酶,这些小鼠所患的这种疾病被治愈了。这种由胞苷脱氨酶(cytidine deaminase)加以强化的CRISPR/Cas9系统结合到这两个需要被校正的基因拷贝上,并且在局部打开DNA双链。胞苷脱氨酶将致病性的DNA碱基对C-G转化为健康人体内对应基因组位点上存在的碱基对T-A。这能够校正Pah酶编码基因中的DNA碱基错误。

  国内碱基编辑器新进展

  近年来,将CRISPR/Cas基因编辑酶(如CRISPR/Cas9、CRISPR/Cpf1等)与核酸脱氨编辑酶(如胞嘧啶脱氨酶APOBEC/AID、腺嘌呤脱氨酶ADAR等)整合发展出的碱基编辑系统(Base Editor, BE),可在单碱基水平实现高效率的靶向基因编辑(C-to-T、A-to-G)。这种新型碱基编辑系统理论上可对数百种引起人类疾病的基因组单碱基突变进行定点矫正,因此拥有巨大的临床应用潜力。碱基编辑技术于2017年被Science杂志评为全球十大年度科学突破之一,进一步凸显出该领域在科学研究和临床应用上的重要潜力。

  我国学者现已成功开发基于脱氨酶APOBEC的新型普适碱基编辑器中国科学院上海生命科学研究院(营养与健康院)中国科学院-马普计算生物学研究所杨力研究组与上海科技大学生命学院陈佳研究组和黄行许研究组合作,成功开发出一系列基于人胞嘧啶脱氨酶APOBEC的新型普适碱基编辑器,其中基于人APOBEC3A(hA3A)的碱基编辑器可高效介导甲基化胞嘧啶mC到胸腺嘧啶T的编辑。相关成果以Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion 为题,在线发表在国际学术期刊《自然-生物技术》(Nat Biotechnol)上。

  在这项最新的研究中,合作团队首先利用生物信息学方法系统分析了与人类疾病相关的单碱基突变,发现胸腺嘧啶T到胞嘧啶C突变中的大部分处于CpG二核苷酸位点。而在哺乳动物基因组中,CpG位点的胞嘧啶通常易被甲基化修饰。目前已报道的碱基编辑系统大多是利用大鼠APOBEC1(rA1)作为脱氨酶进行基因组编辑,合作团队的研究发现此类rA1依赖的碱基编辑通常会受到DNA甲基化修饰水平的影响,因此在基因组DNA高甲基化区域无法实现高效的碱基编辑。为了实现高甲基化区域内的高效碱基编辑,合作团队成员利用十余种来自不同物种的APOBEC胞嘧啶脱氨酶家族蛋白构建出一系列新型碱基编辑器,可广泛用于胞嘧啶C至胸腺嘧啶T单碱基编辑。更为重要的是,合作团队通过一系列筛选鉴定,发现基于人APOBEC3A的碱基编辑器(hA3A-BE)可在基因组高甲基化区域实现高效的甲基化胞嘧啶mC至胸腺嘧啶T单碱基编辑。深入研究发现,hA3A-BE是一种普适且高效的碱基编辑器,可在已检测的多种环境中实现胞嘧啶C(或甲基化胞嘧啶mC)至胸腺嘧啶T的高效编辑。最后,通过对人APOBEC3A的系统性改造,研究团队缩小了hA3A-BE的编辑区间,进一步提高了其碱基编辑的精度。与之前报道的基于大鼠APOBEC1的碱基编辑器相比,基于人APOBEC3A的新型碱基编辑器应用范围更加广泛和全面,这为碱基编辑系统在基础研究及未来临床领域的全面深入应用提供了新工具、新方法和新思路。

  针对碱基基因器的研究虽已经历了众多实验,但是要真正投入到实验中,仍需要很多研究来证明其安全性。


本文由五度数科整理,转载请标明出处,违者必究!

评论

产业专题

申请产品定制

请完善以下信息,我们的顾问会在1个工作日内与您联系,为您安排产品定制服务

  • *姓名

  • *手机号

  • *验证码

    获取验证码
    获取验证码
  • *您的邮箱

  • *政府/园区/机构/企业名称

  • 您的职务

  • 备注